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Abstract
Formal Concept Analysis (FCA) is a prominent
field of applied mathematics using object-attribute
relationships to define formal concepts – groups
of objects with common attributes – which can be
ordered into conceptual hierarchies, so-called con-
cept lattices. We consider the problem of satisfia-
bility of membership constraints, i.e., to determine
if a formal concept exists whose object and attribute
set include certain elements and exclude others. We
analyze the computational complexity of this prob-
lem in general and for restricted forms of member-
ship constraints. We perform the same analysis for
generalizations of FCA to incidence structures of
arity three (objects, attributes and conditions) and
higher. We present a generic answer set program-
ming (ASP) encoding of the membership constraint
satisfaction problem, which allows for deploying
available highly optimized ASP tools for its solu-
tion. Finally, we discuss the importance of mem-
bership constraints in the context of navigational
approaches to data analysis.

1 Introduction
Conceptual Knowledge Processing and Representation is a
particular approach to knowledge management, acknowledg-
ing the constitutive role of thinking, arguing and communi-
cating human beings in dealing with knowledge and its pro-
cessing. The term processing also underlines the fact that
obtaining or approximating knowledge is a process which
should always be conceptual in the above sense. The methods
of Conceptual Knowledge Processing have been introduced
and discussed by Rudolf Wille in [Wille, 2006], based on the
pragmatic philosophy of Charles Sanders Peirce, continued
by Karl-Otto Apel and Jürgen Habermas.

Wille defines Conceptual Knowledge Processing as an ap-
plied discipline dealing with knowledge which is constituted
by conscious reflexion, discursive argumentation and human
communication on the basis of cultural background, social
conventions and personal experiences. Its main aim is to
develop and maintain formal methods and instruments for
processing information and knowledge which support ratio-
nal thought, judgment and action of human beings and there-

with promote critical discourse (see also [Wille, 1994; 1997;
2000]).

The mathematical theory underlying Conceptual Knowl-
edge Processing is Formal Concept Analysis, providing a
powerful and elegant mathematical tool for understanding
and investigating knowledge, based on a set-theoretical se-
mantics, comprising methods for representation, acquiring,
and retrieval of knowledge, as well as for further theory build-
ing in several other domains of science.

Formal Concept Analysis (FCA) appeared at the end of the
1980’s in order to restructure classical lattice theory into a
form that is suitable for applications in data analysis. The fun-
damental data structure FCA uses is a formal context, which
exploits the fact that data is quite often represented by inci-
dence structures relating objects and attributes. FCA provides
also a mathematization of the traditional, philosophical un-
derstanding of a concept as a unit of thought consisting of an
extent (the set of objects falling under the concept) and an
intent (the set of attributes characterizing the concept). Us-
ing mathematical operations, concepts are computed from the
object-attribute data table. They can be naturally ordered, re-
sulting in a conceptual hierarchy, called concept lattice. The
entire information stored in a formal context is preserved by
this operation and the concept lattice is the basis for further
data analysis. It can be represented graphically in order to
allow navigation among concepts, as well as to support com-
munication. Different algebraic methods can be used in order
to study its structure and to compute data dependencies. FCA
also provides elegant methods to significantly reduce the ef-
fort of mining association rules.

Classical FCA was extended by Wille and Lehmann to the
triadic case, featuring a ternary (objects vs. attributes vs. con-
ditions) instead of a binary (objects vs. attributes) incidence
relation [Lehmann and Wille, 1995], leading to the notions of
tricontext and triconcept. This extension has been success-
fully used in inherently triadic scenarios such as collaborative
tagging [Jäschke et al., 2008].

Nevertheless, if the number of concepts is very large, a
holistic graphical representation may become inefficient and
unwieldy. Note that the number of concepts may be exponen-
tially in the size of the underlying (tri)context.

Hence, a way of narrowing down the set of “interesting”
concepts by specifying criteria appears as a crucial feature of
conceptual knowledge management applications, in order to



focus exactly on the data subset one is interested to explore
or start exploration from. As a straightforward form of such
criteria, we introduce membership constraints which specify
that a formal concept’s extent or intent must include certain
elements and exclude others. The question of satisfiability of
such membership constraints, i.e., to determine if there ex-
ists at all a formal concept is the starting point of our current
research. In this paper, we analyze the computational com-
plexity of this problem, both for the classical dyadic case and
for higher arity generalizations of FCA, first for triadic data
sets and then for the n-adic case. Moreover, we also dis-
cuss a generic answer set programming (ASP) encoding of
membership constraint problems, which allows for deploying
available highly optimized ASP tools for its solution. Finally,
we turn our attention to the question wherefrom the entire
problem setting started, namely we discuss the importance
of membership constraints in the context of navigational ap-
proaches to data analysis and provide some conclusions of
our work.

2 Preliminaries
2.1 Formal Concept Analysis
In the following, we briefly sketch some basic notions about
FCA. For more, please refer to [Ganter and Wille, 1999].
Definition 1. A formal context is a triple K = (G,M, I)
with G and M being sets called objects and attributes, re-
spectively, and I ⊆ G × M the binary incidence relation
where gIm means that object g has attribute m.

Finite formal contexts can be represented as cross-tables,
the rows of which are representing objects, the columns at-
tributes, while the incidence relation is represented by crosses
in that table.

m1 m2 m3 m4 m5 m6

g1 ×
g2 × ×
g3 × ×
g4 ×
g5 × × ×
g6 ×

Figure 1: Formal context as a cross-table

Definition 2. For a set A ⊆ G of objects we define the deriva-
tion operator AI := {m | gIm for all g ∈ A} and for a set
B ⊆ M of attributes, we analogously define BI = {g |
gIm for all m ∈ B}. A formal concept of a context K is a
pair (A,B) with extent A ⊆ G and intent B ⊆M satisfying
AI = B and BI = A. We denote the set of formal concepts
of the context K by B(K).

An alternative, useful way of characterizing formal con-
cepts is that A × B ⊆ I and A, B are maximal w.r.t. this
property, i.e., for every C ⊇ A and D ⊇ B with C ×D ⊆ I
must hold C = A and D = B.
Definition 3. If (A,B), (C,D) ∈ B(K), we say that (A,B)
is a subconcept of (C,D) (or equivalently, (C,D) is a su-
perconcept of (A,B)), and we write (A,B) ≤ (C,D) if and
only if A ⊆ C (⇔ D ⊆ B).

The set B(K) of formal concepts, ordered by the
subconcept-superconcept relationship is a complete lattice
and can be graphically represented as an order diagram.

Figure 2: Concept lattice of the context in Figure 1

F. Lehmann and R. Wille extended in [Lehmann and Wille,
1995] the theory of FCA to deal with threedimensional data.
This has been called Triadic FCA (3FCA), where objects are
related to attributes and conditions.

Definition 4. A tricontext is a quadruple K = (G,M,B, Y )
with G, M , and B being sets called objects, attributes, and
conditions, respectively, and Y ⊆ G ×M × B the ternary
incidence relation where (g,m, b) ∈ Y means that object g
has attribute m under condition b.

Finite tricontexts can be represented as three-dimensional
cross-tables, which are typically displayed in “slices”, e.g.:

b1 m1 m2 m3 m4

g1 × × × ×
g2 × × ×
g3 × × ×
g4 × × ×

b2 m1 m2 m3 m4

g1 × ×
g2 × × ×
g3 × × × ×
g4 × × × ×

b3 m1 m2 m3 m4

g1 × × ×
g2 × × ×
g3 × × ×
g4 × × × ×

Definition 5. A triconcept of a tricontext K is a triple
(A1, A2, A3) with extent A1 ⊆ G, intent A2 ⊆ M , and
modus A3 ⊆ B satisfying A1 ×A2 ×A3 ⊆ Y and for every
C1 ⊇ A1, C2 ⊇ A2, C3 ⊇ A3 that satisfy C1×C2×C3 ⊆ Y
holds C1 = A1, C2 = A2, and C3 = A3. We denote by T(K)
the set of all triconcepts of K.

With the rise of folksonomies as data structure of social re-
source sharing systems, triadic FCA was directly applied in
the study of folksonomies [Jäschke et al., 2008]. Efficient
algorithms to determine all (or all frequent) triconcepts of a
tricontext have been developed. However, a visualization that
would be as intuitive as concept lattices for classical FCA
has remained elusive for the triadic case. Initial investiga-
tions into interactive ways of browsing the space of tricon-
cepts have been made [Rudolph et al., 2015].

2.2 Complexity Theory
We assume the reader to be familiar with complexity the-
ory [Papadimitriou, 1994] and, in particular, the complexity
classes AC0 and NP.

We briefly recap that AC0 (problems solvable by Boolean
circuits of polynomial size and constant depth) coincides with
expressibility by first-order formulae [Immerman, 1999]. It is
worth noting that such problems can be solved in logarithmic
space.



NP is the class of problems solvable by a nondeterministic
Turing machine in polynomial time. We will provide here
a traditional, prototypical NP-complete problem, which we
will use later to show NP-hardness of certain problems.

problem: 3SAT
input: family L = {L1, . . . , Ln} of 3-element sets Li of
literals of the form p or ¬p.
output: YES in case the Boolean formula ϕL :=∧
{`1,`2,`3}∈L(`1 ∨ `2 ∨ `3) is satisfiable, NO otherwise.

Example 1. Consider L = {L1, L2, L3} with L1 =
{r, s,¬q}, L2 = {s,¬q,¬r}, and L3 = {¬q,¬r,¬s}.
The corresponding 3SAT problem amounts to checking if
ϕL = (¬q ∨ r ∨ s) ∧ (¬q ∨ ¬r ∨ s) ∧ (¬q ∨ ¬r ∨ ¬s)
is satisfiable. The answer is yes, since for the valuation
v = {q 7→ true, r 7→ false, s 7→ true} the formula ϕL
evaluates to true.

3 Membership Constraints
In this section, we introduce membership constraints for for-
mal concepts. These constraints express which objects and
attributes should be part of the concept and which should not.

Definition 6. A membership constraint on a formal context
K = (G,M, I) is a quadruple C = (G+, G−,M+,M−)
with G+ ⊆ G called required objects, G− ⊆ G called for-
bidden objects, M+ ⊆ M called required attributes, and
M− ⊆M called forbidden attributes.

A formal concept (A,B) of K is said to satisfy such a
membership constraint if all the following conditions hold:
G+ ⊆ A, G− ∩A = ∅, M+ ⊆ B, M− ∩B = ∅.

A membership constraint is said to be satisfiable with re-
spect to K, if it is satisfied by one of its formal concepts.

Next we define the decision problem of membership con-
straint satisfiability (MCSAT).

problem MCSAT
input: formal context K, membership constraint C
output: YES if C satisfiable w.r.t. K, NO otherwise.

In the general case, the complexity of the (MCSAT) prob-
lem turns out to be intractable.

Theorem 7. MCSAT is NP-complete, even when restricting
to membership constraints of the form (∅, G−, ∅,M−)

Proof. NP membership is straightforward: after guessing a
pair (A,B) from 2G × 2M , it can be checked in polynomial
time if (A,B) is a formal concept of K and if it satisfies C.

We prove NP hardness via a reduction from 3SAT. Given
a set L = {L1, . . . , Ln} of propositional literal sets over the
set {p1, . . . , pk} of propositional variables, define the formal
context KL = (G,M, I) with

• G = L∪P+ ∪P− with P+ = {p1, . . . , pk} and P− =
{¬p1, . . . ,¬pk},
• M = P+ ∪ P− ∪ P̃ with P̃ = {p̃1, . . . , p̃k},

• I := {(Li,m) | Li ∈ L,m ∈M \ Li}
∪ L × P̃
∪ {(l1, l2) | l1, l2 ∈ P+ ∪ P−, l1 6= l2}
∪ {(pi, p̃j) | i 6= j}
∪ {(¬pi, p̃j) | i 6= j}

Furthermore, let CL denote the membership constraint
(∅,L, ∅, P̃ ).

Note that both KL and CL can be computed in polynomial
time and are of polynomial size with respect to ‖L‖.

We will now show that L is satisfiable exactly if C is satis-
fiable w.r.t. K.

“⇒”: if L is satisfiable there must be a valuation v :
{p1, . . . pk} → {true, false} under which L evaluates to
true. Let Lv be the set of literals such that p ∈ Lv whenever
v(p) = true and ¬p ∈ Lv whenever v(p) = false. We
next show that ((P+ ∪ P−) \ Lv, Lv) is a formal concept of
KL. On one hand we have: ((P+ ∪ P−) \ Lv)I = {m ∈
P+ ∪ P− | m 6∈ (P+ ∪ P−) \ Lv} ∪ {p̃ ∈ P̃ | p,¬p 6∈
(P+∪P−)\Lv} = Lv . On the other hand LI

v = {Li | Lv ⊆
M \ Li} ∪ {l | l 6∈ Lv} = ∅ ∪ (P+ ∪ P−) \ Lv .

Next, we observe that this formal concept satisfies CL,
since none of the Li are contained in the extent and none of
the p̃j are contained in its intent. Therefore, we have found a
concept witnessing the satisfiability of CL w.r.t. KL.

“⇐”: Assume CL is satisfiable w.r.t. KL. Then there must
be a formal concept (A,B) of KL with L ∩A = ∅ as well as
P̃ ∩ B = ∅. Observe that A must contain one of p or ¬p for
each propositional variable p, since otherwise p̃ ∈ B would
hold. Consequently B cannot contain both p and ¬p for any
propositional variable p. Moreover, for every Li ∈ L there
must be one l ∈ B ∩ (P+ ∪ P−) with l ∈ Li. Next, let
B̂ := P+∩B∪{¬p | p 6∈ B}. By our observation above, we
know that B ⊆ B̂ therefore B̂ still contains at least one literal
from every Li. On the other hand, B̂ directly corresponds to
a valuation vB̂ : {p1, . . . pk} → {true, false} mapping pi
to true if pi ∈ B̂ and to false if ¬pi ∈ B̂. Consequently,
vB̂ is a valuation making ϕ true and hence showing that it is
satisfiable.

The following example demonstrates the reduction of
3SAT to MCSAT deployed in the previous proof.
Example 2. The 3SAT problem from Example 1 can
be reduced to the question if the membership constraint
(∅, {L1, L2, L3}, ∅, {q̃, r̃, s̃}) is satisfiable in the following
context:

q r s ¬q ¬r ¬s q̃ r̃ s̃

{r, s,¬q} × × × × × ×
{s,¬q,¬r} × × × × × ×
{¬q,¬r,¬s} × × × × × ×
q × × × × × × ×
r × × × × × × ×
s × × × × × × ×
¬q × × × × × × ×
¬r × × × × × × ×
¬s × × × × × × ×

This is the case as witnessed by the formal concept
({r,¬q,¬s}, {q, s,¬r}).



When analyzing the problem further it turns out that the
simultaneous presence of forbidden objects and forbidden at-
tributes in a membership constraint is the (only) reason for the
established intractability. If one of the sets becomes empty,
the complexity drops to a very pleasant level.

Theorem 8. When restricted to membership constraints of
the form (G+, ∅,M+,M−) or (G+, G−,M+, ∅) MCSAT is
in AC0.

Proof. We show the claim for constraints of the form C =
(G+, ∅,M+,M−), the other case follows by duality. First
observe that (M+I

,M+II
) is a formal concept of K and it

is subset-maximal w.r.t. its extent and subset-minimal w.r.t.
its intent among all formal concepts whose intent contains
M+. Therefore, (G+, ∅,M+,M−) is satisfiable w.r.t. K if
and only if it is satisfied by (M+I

,M+II
). By definition,

this is the case iff (1) G+ ⊆ M+I and (2) M+II ∩M− =
∅. Statement (1) can be rephrased into the condition G+ ×
M+ ⊆ I , while Statement (2) is equivalent to the condition
that for every m ∈ M− there exists some g ∈ (M+)I with
(g,m) 6∈ I .

We now define a first-order-logic interpretation IK,C =
(∆, ·I) over the predicates pG, pM , pG+ , pM+ , pM− (all
unary) and the binary predicate pI as follows: ∆ = G ∪M ,
for every X ∈ {G,M,G+,M+,M−} we let pIX = X , and
pII = I . Obviously, I is an immediate representation of the
MCSAT problem. Now the above formulated Statement (1)
can be expressed by the first-order formula ϕ1 defined as

∀x, y.(pG+(x) ∧ pM+(y)→ pI(x, y)),

while Statement (2) can be expressed by ϕ2 defined as

∀x.pM−(x)→ ∃y.(∀z.(pM+(z)→ pI(y, z)) ∧ ¬pI(y, x)).

Consequently, satisfiability of C w.r.t. K coincides with the
satisfaction of the fixed first-order-logic formula ϕ = ϕ1∧ϕ2

in IK,C. By the corresponding result from descriptive com-
plexity theory [Immerman, 1999], we can conclude that the
considered restricted version of MCSAT is in AC0.

Finally, if only required objects or required attributes are
given, MCSAT becomes trivial.

Theorem 9. When restricted to membership constraints of
the form (G+, ∅, ∅, ∅) or (∅, ∅,M+, ∅) MCSAT is trivially
true.

Proof. For the form (G+, ∅, ∅, ∅), note that (G,G′) is always
a formal concept and always satisfies such a constraint. The
other case follows by duality.

4 Membership Constraints in Triadic FCA
Next we define and investigate membership constraints and
the corresponding satisfiability problem for the triadic case.

Definition 10. A triadic membership constraint on a
tricontext K = (G,M,B, Y ) is a sextuple C =
(G+, G−,M+,M−, B+, B−) with G+ ⊆ G called required
objects, G− ⊆ G called forbidden objects, M+ ⊆ M called
required attributes, M− ⊆ M called forbidden attributes,

B+ ⊆ B called required conditions, and B− ⊆ B called
forbidden conditions

A triconcept (A1, A2, A3) of K is said to satisfy such a
membership constraint if all the following conditions hold:
G+ ⊆ A1, G− ∩ A1 = ∅, M+ ⊆ A2, M− ∩ A2 = ∅,
B+ ⊆ A3, B− ∩A3 = ∅.

A triadic membership constraint is said to be satisfiable
with respect to K, if it is satisfied by one of its triconcepts.

problem TMCSAT
input: tricontext K, triadic membership constraint C
output: YES if C satisfiable w.r.t. K, NO otherwise.

Interestingly, in the triadic case, we find two possible
sources for intractability. One of them (two nonempty for-
bidden sets) is tightly related to the case discussed in the pre-
vious section, while the other one (required and forbidden set
of the same type) is tractable for classical FCA and becomes
intractable only when going triadic.
Theorem 11. TMCSAT is NP-complete, even when restrict-
ing to triadic membership constraints of the following forms:
• (∅, G−,∅,M−,∅,∅), (∅, G−,∅,∅,∅, B−), (∅,∅,∅,M−,∅, B−),
• (G+, G−,∅,∅,∅,∅), (∅,∅,M+,M−,∅,∅), (∅,∅,∅,∅, B+, B−).

Proof. NP membership is straightforward: after guessing a
triple (A1, A2, A3) from 2G× 2M × 2B , it can be checked in
polynomial time if (A1, A2, A3) is a triconcept of K and if it
satisfies C.

We proceed by showing hardness for the restricted cases.
Given some (dyadic) formal context K = (G,M, I),

we define its triadic version T(K) = (G,M, {∗}, I ×
{∗}). Then, the set of all triconcepts of T(K) is
{(G,M, ∅)} ∪ {(A1, A2, {∗}) | (A1, A2) concept of K}.
Therefore, every MCSAT problem with context K and con-
straint (∅, G−, ∅,M−) can be reduced to the TMCSAT prob-
lem with tricontext T(K) and (∅, G−, ∅,M−, ∅, ∅). Since
the former problem is NP-complete due to Theorem 7, the
latter must be NP-hard. By symmetry, this argument car-
ries over to constraints of the form (∅, G−, ∅, ∅, ∅, B−) and
(∅, ∅, ∅,M−, ∅, B−).

Next, we show hardness for constraints of the form
(G+, G−, ∅, ∅, ∅, ∅). Again, we do so by a reduction from
3SAT. Given a set L = {L1, . . . , Ln} of propositional lit-
eral sets over the set {p1, . . . , pk} of propositional variables,
define the tricontext KL = (G,M,B, Y ) with
• G = {∗} ∪ L,
• M = {∗, p1, . . . , pk}
• B = {∗,¬p1, . . . ,¬pk}
• Y = G×M ×B \

(
{(∗, pi,¬pi) | 1 ≤ i ≤ k}

∪{(Lj , pi, ∗) | pi ∈ Lj} ∪ {(Lj , ∗,¬pi) | ¬pi ∈ Lj}
)

Furthermore, let CL denote the membership constraint
({∗},L, ∅, ∅, ∅, ∅).

Note that both KL and CL can be computed in polynomial
time and are of polynomial size with respect to ‖L‖.

We will now show that L is satisfiable exactly if C is satis-
fiable w.r.t. K.



“⇒”: if L is satisfiable there must be a valuation v :
{p1, . . . pk} → {true, false} under which L evaluates to
true. Let Lv be the set of literals such that p ∈ Lv whenever
v(p) = true and ¬p ∈ Lv whenever v(p) = false. We next
show that (A1, A2, A3) = ({∗}, {∗}∪(Lv∩M), {∗}∪(Lv∩
B)) is a triconcept of KL: First, A1 × A2 × A3 ⊆ Y , since
Lv cannot both contain some pi and ¬pi as it stems from
a valuation. We now show that (A1, A2, A3) is also maxi-
mal, i.e., no component can be extended while maintaining
A1 × A2 × A3 ⊆ Y . Since Lv already contains for every
i ∈ {1, . . . , n} either pi or ¬pi, extending A2 or A3 would
lead to some i satisfying pi ∈ A2 and ¬pi ∈ A3 which con-
tradicts (∗, pi,¬pi) 6∈ Y . It remains to show that A1 cannot
be extended. Toward a contradiction, suppose it can, i.e., for
some Lj ∈ L holds {Lj} × A2 × A3 ⊆ Y . However, by
construction, we know that Lj ∩Lv is non-empty. Assuming
there is some pi ∈ Lj ∩ Lv , we conclude pi ∈ A2 and thus
(Lj , pi, ∗) ∈ Y which is wrong by construction. Assuming
there is some ¬pi ∈ Lj ∩ Lv , we conclude ¬pi ∈ A3 and
thus (Lj , ∗,¬pi) ∈ Y which, again, is wrong by construc-
tion. Hence A1 cannot be extended either and (A1, A2, A3)
is indeed a triconcept, which obviously also satisfies CL.

“⇐”: Assume CL is satisfiable w.r.t. KL. Then there must
be a triconcept ({∗}, A2, A3) of KL. Since (∗, pi,¬pi) 6∈ Y ,
we know that for no pi holds pi ∈ A2 and ¬pi ∈ A3 at the
same time. On the other hand, by maximality, for every pi
one of pi ∈ A2 and ¬pi ∈ A3 must hold. Therefore, we
can define a valuation v by letting v(pi) = true whenever
pi ∈ A2 and letting v(pi) = false whenever ¬pi ∈ A3. We
now show that v is a valuation mapping L to true and thus
witnessing satisfiability of L. By assumption, ({∗}, A2, A3)
is maximal, thus – by maximality of the first component – for
every Lj ∈ Lmust hold that {Lj}×A2×A3 6⊆ Y . Then, by
construction of KL there must be either some pi ∈ Lj with
pi ∈ A2 or there must be some ¬pi ∈ Lj with ¬pi ∈ A3. In
any case, this means that Lj is mapped to true under v. Since
the same argument applies to every Lj ∈ L we find that v is
indeed a valuation witnessing the satisfiability of L.

The subsequent example demonstrates the 3SAT to 3MC-
SAT reduction for the new intractable case.
Example 3. The 3SAT problem from Example 1 can
be reduced to the question if the membership constraint
({∗}, {L1, L2, L3}, ∅, ∅, ∅, ∅) is satisfiable in the following
tricontext:
∗ ∗ q r s

∗ × × × ×
¬q × × ×
¬r × × ×
¬s × × ×

L1 ∗ q r s

∗ × ×
¬q × × ×
¬r × × × ×
¬s × × × ×

L2 ∗ q r s

∗ × × ×
¬q × × ×
¬r × × ×
¬s × × × ×

L3 ∗ q r s

∗ × × × ×
¬q × × ×
¬r × × ×
¬s × × ×

This is the case as witnessed by the triconcept
({∗}, {∗, q, s}, {∗,¬r}).

We finish the section by showing that excluding the critical
cases discussed above, we regain tractability. We also identify
the cases when the problem becomes trivial.
Theorem 12. TMCSAT is in AC0 when restricting to
membership constraints of the forms (∅, G−,M+, ∅, B+, ∅),
(G+, ∅, ∅,M−, B+, ∅), and (G+, ∅,M+, ∅, ∅, B−).

Proof. For C of the form (∅, G−,M+, ∅, B+, ∅), note that
(GU ,M,B) with GU = {g | {g} × M × B ⊆ Y } is a
triconcept and for every triconcept (A1, A2, A3) of K hold
GU ⊆ A1 and (trivially) A2 ⊆M as well as A3 ⊆ B. There-
fore C is satisfiable w.r.t. K if and only if (GU ,M,B) satis-
fies it. To check the latter, it suffices to check if GU ∩G− = ∅
which amounts to checking if for every g ∈ G− there are
m ∈ M and b ∈ B with (g,m, b) 6∈ Y . This, in turn is
equivalent to IK,C satisfying the first-order formula

∀x.pG−(x)→ ∃y, z.(pM (y) ∧ pB(z) ∧ ¬pY (x, y, z)).

Again we can invoke descriptive complexity theory [Immer-
man, 1999] to conclude that the considered restricted version
of TMCSAT is in AC0.

AC0 membership for the other forms of C follows by sym-
metry.

Theorem 13. TMCSAT is trivially true when restricting to
membership constraints of the forms (∅, ∅,M+, ∅, B+, ∅),
(G+, ∅, ∅, ∅, B+, ∅), or (G+, ∅,M+, ∅, ∅, ∅).

Proof. For the form (∅, ∅,M+, ∅, B+, ∅), note that the tri-
concept (GU ,M,B) with GU = {g | {g} ×M × B ⊆ Y }
satisfies any constraint of this form, thus satisfiability is al-
ways ensured. The other cases follow by symmetry.

5 Membership Constraints in n-adic FCA
Classical FCA and triadic FCA can be seen as two instances
of a general framework that we call n-adic FCA. We pro-
vide the corresponding definitions and observe that the al-
ready identified causes of intractability are the only ones also
when increasing the arity of the incidence relation further.
Definition 14. An n-context is an (n+1)-tuple K =
(K1, . . . ,Kn, R) with K1, . . . ,Kn being sets, and R ⊆
K1 × . . .×Kn the n-ary incidence relation.

An n-concept of an n-context K is an n-tuple (A1, . . . , An)
satisfying A1 × . . . × An ⊆ R and for every n-tuple
(C1, . . . , Cn) with Ai ⊇ Ci for all i ∈ {1, . . . , n}, satisfy-
ing C1× . . .×Cn ⊆ R holds Ci = Ai for all i ∈ {1, . . . , n}.
Definition 15. A n-adic membership constraint on a n-
context K = (K1, . . . ,Kn, R) is a 2n-tuple C =
(K+

1 ,K−1 , . . . ,K+
n ,K−n ) with K+

i ⊆ Ki called required sets
and K−i ⊆ Ki called forbidden sets.

An n-concept (A1, . . . , An) of K is said to satisfy such a
membership constraint if K+

i ⊆ Ai and K−i ∩ Ai = ∅ hold
for all i ∈ {1, . . . , n}.

An n-adic membership constraint is said to be satisfiable
with respect to K, if it is satisfied by one of its n-concepts.

problem nMCSAT
input: n-context K, n-adic membership constraint C
output: YES if C satisfiable w.r.t. K, NO otherwise.

It turns out that the triadic case exhibits all necessary infor-
mation needed to settle the general case, taking into account
some straightforward adaptations, hence the following theo-
rem is immediate.



Theorem 16. For a fixed n > 2, the nMCSAT problem is

• NP-complete for any class of constraints that allows for

– the arbitrary choice of at least two forbidden sets
or

– the arbitrary choice of at least one forbidden set
and the corresponding required set,

• in AC0 for the class of constraints with at most one for-
bidden set and the corresponding required set empty,

• trivially true for the class of constraints with all forbid-
den sets and at least one required set empty.

6 Encoding in Answer Set Programming

Given that satisfiability of membership constraints can in gen-
eral be NP-complete, it is nontrivial to find efficient algo-
rithms. We note here that the problem can be nicely expressed
with answer set programming (ASP, see for instance [Gebser
et al., 2012]). We will demonstrate this for the n-adic case.
Assuming the specific problem is given by the following set
of ground facts FK,C:

• seti(a) for all a ∈ Ki,

• rel(a1, . . . , an) for all (a1, . . . , an) ∈ R,

• requiredi(a) for all a ∈ K+
i , and

• forbiddeni(a) for all a ∈ K−i .

Let P denote the following fixed answer set program (with
rules for every i ∈ {1, . . . , n}):

ini(x)← seti(x) ∧ ∼outi(x)

outi(x)← seti(x) ∧ ∼ini(x)

←
∧

j∈{1,...,n} inj(xj) ∧ ∼rel(x1, . . . , xn)

exci(xi)←
∧

j∈{1,...,n}\{i} inj(xj) ∧ ∼rel(x1, . . . , xn)

← outi(x) ∧ ∼exci(x)

← outi(x) ∧ requiredi(x)

← ini(x) ∧ forbiddeni(x)

Intuitively, the first two lines “guess” an n-concept candi-
date by stipulating for each element of each Ki if they are in
or out. The third rule eliminates a candidate if it violates the
condition A1 × . . .×An ⊆ R, while the fourth and fifth rule
ensure the maximality condition for n-concepts. Finally, the
sixth and the seventh rule eliminate n-concepts violating the
given membership constraint.

There is a one-to-one correspondence between the answer
sets X of FK,C ∪ P and the n-concepts of K satisfying C
obtained as ({a | in1(a) ∈ X}, . . . , {a | inn(a) ∈ X}).
Consequently, optimized off-the-shelf ASP tools can be used
for checking satisfiability but also for enumerating all satis-
fying n-concepts.

Algorithm 1 interactive n-concept finding algorithm
function FINDNCONCEPTINTERACTIVE(K)
Input: n-context K = (K1, . . . ,Kn, R)
Output: n-concept searched by user
Data: membership constraint C=(K+

1 ,K
−
1 ,. . .,K

+
n,K

−
n )

C := (∅, . . . , ∅)
C :=PROPAGATE(K,C)
while Ki 6= K+

i ∪K−i for some i ∈ {1, . . . , n} do
have user pick some such i and a ∈ Ki\(K+

i ∪K
−
i )

have user pick some decision ∈ {in, out}
if decision = in then

update C by K+
i := K+

i ∪ {a}
else

update C by K−i := K−i ∪ {a}
end if
C :=PROPAGATE(K,C)

end while
return (K+

1 , . . . ,K+
n )

end function

Algorithm 2 propagation of user decisions
function PROPAGATE(K,C)
Input: n-context K, membership constraint C
Output: updated membership constraint
Data: membership constraint C′

for all i ∈ {1, . . . , n} do
for all a ∈ Ki \ (K+

i ∪K−i ) do
obtain C′ from C by adding a to K+

i
if NMCSAT(K,C′) = NO then

update C by adding a to K−i
end if
obtain C′ from C by adding a to K−i
if NMCSAT(K,C′) = NO then

update C by adding a to K+
i

end if
end for

end for
return C

end function

7 Navigation in Conceptual Spaces
In this section we briefly describe an interactive search sce-
nario where membership constraints can be put to use to sup-
port a user in finding an n-concept with desired properties.
This is particularly useful in cases where the number of n-
concepts is very large. The method is formally specified in
Algorithm 1 (which calls Algorithm 2, which in turn relies on
an nMCSAT solving procedure NMCSAT). We next explain
the intuition and the formal arguments behind this approach
in more detail.

First, given an n-context K = (K1, . . . ,Kn, R) and a cor-
responding membership constraint C, let [C]K denote the set
of all n-concepts of K that satisfy C. Next, observe that for
the “zero-constraint” C∅ = (∅, . . . , ∅), the set [C∅]K contains



all n-concepts of K. Further, for two membership constraints
C1 and C2 with C1 � C2 (where we let � denote compo-
nentwise ⊆ and read it as “more general than”), we observe
[C2]K ⊆ [C1]K. Finally every n-concept C = (A1, . . . , An)
of K gives rise to the characteristic membership constraint
CC := (A1,K1 \A1, . . . , An,Kn \An) with [CC ]K = {C}.

We now want to describe the identification of an n-concept
by a user as an iterated approximation process starting from
C∅ and going along a chain of ever more specific (but satisfi-
able) membership constraints until CC is reached for some
n-concept C. Thereby, given a current constraint C =
(K+

1 ,K−1 , . . . ,K+
n ,K−n ), the next constraint is determined

by the user by picking some a ∈ Ki \ (K+
i ∪K−i ) for some

i and adding it either to K+
i or K−i . In words, for some ele-

ment, whose participation in the looked-for n-concept is not
yet determined, the user has to decide to include or exclude
it. In order to avoid that the membership constraint turns un-
satisfiable as a consequence of the user’s refinement decision,
we will perform constraint propagation on C before the inter-
action: for every a ∈ Ki \ (K+

i ∪ K−i ) for some i where
adding a to K+

i (respectively K−i ) would result in an unsat-
isfiable constraint, we add it to K−i (respectively K+

i ). Note
that not both can be the case at the same time, since otherwise
C itself would be unsatisfiable.

Note that the interactive algorithm sketched here does
not need to compute all (possibly exponentially many) n-
concepts upfront, it merely relies on (polynomially many)
subsequent nMCSAT checks. An appropriate user interface
for this navigation method would consist in n labeled lists
containing the elements of the Ki with elements from K+

i la-
beled with “in” (or an appropriate color), elements from K−i
labeled with “out”, and elements from Ki \ (K+

i ∪K−i ) la-
beled with “unknown”. By clicking on one of the “unknown”
elements, the user may switch it to “in” or “out”. Subsequent
constraint propagation as described above then will possibly
turn other “unknown” labels into “in” or “out” as a ramifica-
tion of the user’s decision. When no more “unknown” labels
are left, the target concept has been identified.

8 Conclusion
Motivated by requirements that arise naturally when apply-
ing conceptual analysis techniques to large knowledge sets,
we have investigated a way of specifying selection criteria
for ”interesting” concepts. To this end, we defined member-
ship constraints as collections of required, respectively for-
bidden objects and attributes. We have studied the computa-
tional complexity of the corresponding satisfiability problem
(MCSAT) of determining if a formal concept exists that ad-
heres to the given specification. We have proved that in its
general form, the MCSAT problem is NP-complete even if
we restrict only to ”forbidden” objects and attributes. On the
other hand, if we have no ”forbidden” objects or no ”forbid-
den” attributes, the complexity drops to AC0.

When considering cases of arity three (objects, attributes,
and conditions) or higher – with the notion of membership
constraints appropriately adjusted – the corresponding prob-
lem is again NP-complete in general, but also here tractable
special cases can be identified.

We presented a generic answer set programming (ASP)
encoding for membership constraints, such that highly op-
timized ASP tools can be used to solve them. Finally we
described an interactive search scenario in order to narrow
down the search space for an n-concept with desired prop-
erties. This search paradigm relies on efficient methods for
nMCSAT checking.

As an obvious and immediate avenue for future work, we
will implement and evaluate our navigation framework based
on the ASP-based satisfiability checker described.
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